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Abstract, The well known Potls Hamiltonian formalism for the general study of site- 
bond correlated perwlation in lattice spin models is introduced for lhe first time in the 
mntext of microsmpic theories of microemulsions me approach is sufficiently general 
to be used in mnneclion arith any lattice model of micnxmulsions. Mthin a mean-field 
approximation, we obtain equations for the percolation thresholds, average duster size 
and duster size diswibution for each of Ihe molecular species of the mixture, which 
require only the knowledge of the structure functions of the model and an adopted bond 
activation probability. The theory is applied to a spin-1 model for miaoemulsions. 

I. General formalism 

Water-in-oil microemulsions can exhibit sharp variation in dielectric behaviour, 
Viscosity and (most spectacularly) in electrical conductivity, upon appropriate variation 
of either the droplet volume fraction, temperature or s a l i t y  of the microemulsion 
system. Such phenomena has been extensively reported in the literature [l-51 and 
can be associated with a percolative transition of the water globules (swollen micelles) 
which are dispersed in an oil rich phase. At the percolation threshold the electrical 
transport regime is dominated by the motion of charge carriers on large, (electrically) 
connected dusters of water droplets. 

In general the micellar Brownian motion of the water droplets, with an attendant 
continuous rearrangement of the clusters, appears to smear the percolation transition 
around the threshold [6], thus affecting the value of the critical exponent at the 
onset of the transition. Below the threshold the (low-frequency) conductivity has a 
p e r - l a w  behaviour of the form [l-31 u(T < T,) - (T, - T)-* with s ES 1.2, 
which is larger than the static percolation exponent s' ES 0.7. Above the threshold, 
when the system is percolating, dynamical effects are substantially reduced and the 
conductivity grows as a power-law u(T > T,,) - (T - Tp)t with t z 1.8, which 
agrees with the static exponent for the metal-msulator problem [7]. The thresholds, 
on the other hand, experience little or no effect from the dynamical correlations 
between clusters and, therefore, are appropriately described by the static (frequency 
independent) percolation problem [6]. Both the percolation thresholds and the values 
of the critical exponents (dynamic percolation) have been successfully determined by 
phenomenological theories, either analytically or via computer simulations [3,6]. The 
model system in these studies consists essentially of a one-component fluid of hard 
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spheres, representing the water globules, interacting with each other via a square- 
well attractive potential [SI or via a more realistic Yukawa tail [3]. The inter-droplet 
interaction, which presumably arises from the surfactant monolayer coating each 
water droplet, accounts for the thermal phase separation as well as for the small 
values of the droplet volume fractions at the percolation transition. The values of 
the thresholds are also affected by other quantities, besides temperature, related to 
the adopted definition of connectivity, e+g. the radius of the conductivity shell [6,8] 
or the strength and range of the bond activation probability [3,9]. 

The aim of this work is to present an entirely different approach to the general 
study of correlated site-bond percolation in microemulsions, starting from microscopic 
lattice models of surfactant mixtures. In this treatment the thermodynamic and 
structural properties of the system are aU derived from the microemulsion model, 
whereas connectedness or clustering properties such as percolation thresholds, cluster 
size distribution and many other quantities of interest, are all obtained via a generating 
function defined from a suitably chosen q-state Potts Hamiltonian coupled to the 
microemulsion model. The formalism is identical to the one employed in the 
celebrated approach to the gelation transition developed by Coniglio, Stanley and 
Klein [lo] and subsequently studied by many authors [ll-131. In the present paper 
the particles are thermally correlated according to the microemulsion Hamiltonian 
instead of the Ising or Potts models [lo, 131. Besides its novelty in the context of 
microemulsions, this treatment is expected to answer questions that are difficult to 
address with phenomenological theories such as the effect of structure, composition, 
interparticle interactions (including the amphiphilic strength) and salinity, among 
others, on the clustering properties of microemulsions. Another important aspect 
of this approach is the fact that there is freedom of choice for the bond activation 
probability. The strength and range of the active bonds can be carefully chosen, 
for instance, to mimic the effect of the charge hopping process between clusters, or 
prescribed in such a way as to tune the percolation transition to be in synchrony 
with thermodynamic criticality (3,101. In a recent work Blossey and Schick [14] 
use a formalism due to Murata [I51 to determine the correlated site percolation 
threshold lies of a two-component lattice model which displays a closed loop phase 
diagram. They lind a rapid variation of the thresholds with temperature below the 
lower critical point similar to that observed in water-in-oil microemulsion systems [3]. 
Despite some similarities, their approach differs from ours in two important aspects. 
First, they study a correlated site percolation problem where the clusters consist of 
particles in contact, whereas in our approach there is freedom of choice for the 
bond activation probability. The second and most important difference is the fact 
that Blossey and Schick use a two-component lattice model which mimia the lower 
miscibility gap found in microemulsions, but cannot be considered a microscopic 
model for mixtures of water, oil and surfactant over a wide range of composition, 
temperature and interparticle interaction snengths. Consequently, as pointed out 
by Blossey and Schick, their approach cannot address, for instance, the effects of 
amphiphilic interactions on the percolation thresholds of microemulsions. 

The three molecular species are distributed over the lattice according to the 
Boltzmann factors for the microemulsion Hamiltonian (sometimes referred to as the 
‘thermal’ Hamiltonian) and, therefore are thermally correlated. Each cluster is formed 
by a maximal set of particles connected by ‘active’ bonds with a prescribed probability 
p. Thus, there may be a ‘thermal’ bond between two particles, say nearest-neighbours, 
which contributes to the energy of the system, but does not necessarily imply that 
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the particles belong to the same cluster, unless this bond is active. In addition to 
the site occupancy variables of the ‘thermal’ Hamiltonian, there is a Potts variable vi 
on every site of the lattice assuming values vi = 1,2, .  . . , q. One can show 113,281 
that the cluster statistics, and therefore the percolation problem, is determined by the 
following dilute Potts Hamiltonian 

N N 

li = 31,{ni} -cc W$(6,,, - 1)nY n! -ccH,(6y,1 - 1)nY. (1) 
ij o,P i o  

Here li,,,{ni} is the microemulsion Hamiltonian which depends on the site occupancy 
variables nq, np and n; representing water, oil and surfactant respectively. A number 
of such models have been proposed and studied in the literature over recent years 
[16-271. The sums in a and p are over these three molecular species. The 6v,v, is 
a Kronecker delta, which is 1 if sites i and j are in the same Potts state and zero 
otherwise. Ha are ghost fields for species a and are conjugate variables to the Y = 1 
Potts state. The quantities W,$ are connectivity functions, the precise form of which 
depend on the details of the model. For instance, if only conventional clusters (i.e. 
clusters made of a single species a) are to be considered, we set 

. .  
W;; = W;j6,@. (2) 

Furthermore, if only nearest-neighbour sites are to be considered (directly) connected 
we have 

if i and j are NN 
otherwise. (3) 

In the following we shall consider only conventional clusters, so that equation (2) 
holds. (Clusters made of connected pairs of different species can be considered in 
the same fashion. See references I291 and the review article by J Halley in reference 
[ll]). In addition we seek clustering of one particular species, denoted a. The 
partition function is given by the configurational sums of the occupancy and Potts 
variables 

2 = exp(-P%{n;}) 
tn.1 

Let us elaborate on the sum Over the Potts configurations {vi}. Given a particle 
configuration {n;} we distinguish two complementary sets: set @Ini} of all sites 
occupied by particles of species a, and set G{ni) ,  which is the set of sites in the 
configuration {n i }  not occupied by a particles. For every site in G{ni}  we pick up a 
term = q in equation (4), therefore the elements of G{ni} contribute a term 
&J‘--RP) for every configuration Ini } .  The partition function becomes 
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where 2,{ni} is the partition function of the qdtate Potts model defined on the 
sublattice L consisting of those sites occupied by particles of species a in the 
configuration Ini} .  The set of vertices in this sublattice is Q{ni}. The set of 
bonds (as defined by the couplings WLj) in this sublattice is denoted B{ni) .  After 
some manipulations it can be shown that 
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where 
.. 

pii = I-exp(-pW;J). (7) 

Here C is a subset of B{ni}  and D its complementary (i.e. 2) = B{ni}  - C); IcI 
denotes the number of bonds in C, and Id1 is the number of bonds in D; 7 labels 
the clusters in the subset C and N ,  is the number of a particles in the rth cluster. 
The sum runs over all subsets C. Notice that equation (5 )  reduces to the (purely) 
'thermal' partition function in the limit q = 1 since 

for every molecular configuration Ini } .  
Equations (9, (6) and (7) yield the cluster statistics through the function 

A ( V , l ,  Ha) defined by 

which gives 

where p'I is the concentration of species a (p" N-'Ci(n?)) and 

defines the statistical average of any cluster related quantity. ((nit)) is the average 
number of clusters oft particles per site. The sum in 1 extends to infinity for He > 0, 
however, only finite clusters contribute. Several quantities of interest are derived from 
equation (10); the average number of clusters per site is given by 

((ne')) = d({W,},O) - 1 t P". (12) 

Species 01 belongs to a cluster of t particles is given by 
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The percolation probability is therefore 

where the prime restricts the summation to finite dusters. It is convenient to define 
a generating function r({W,} ,  H,) through the first derivative of A with respect to 
PH, 

The moments of the cluster distribution are then 

The mean cluster size is given by 

s = / L , / / 1 0 .  (17) 

The pair connectedness, which gives the probability that two cy particles located 
on sites i and j lie within the same cluster, can be defined by introducing an 
inhomogeneous field at each site 

2. Mean-field theory 

In the following we describe a mean-field treatment for the Hamiltonian defined in 
equation (1) in order to obtain an approximate generating function for the percolation 
problem. The thermodynamic properties of the microemulsion model are assumed 
known in this approximation, such that only the Potts part of the Hamiltonian (1) 
is of concern. It is convenient to introduce the following 'spin' representation for 
the Potts variables [30]. At each site i the Potts variable vi assumes one of the q 
values vi = 1,2,. . . , q. Let us define a complex variable U; which takes on the 
values ui = 1, w,  w2,. . . , wq-l, Le. there is a unique correspondence between the 
variables vi and cri given by 

ui = ww;-' (19) 

where w = exp(2ni/q) is a qth-root of unity in the complex plane. The w therefore 
satisfies the equation zq - 1 = 0, which can be written as 

( z - l ) ( l + z + . . . f Z q - ' )  = 0. (20) 
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It is easy to show that 
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In this representation the Hamiltonian (1) is written as 

where we have used the fact that uk = 1 for k = 0 or k = q. The (local) fraction of 
particles of species Q in the Lth Potts state is defined by pp fj, where 

fi' = (6vir) = (60,,,,4-1) 1 = 1,2, .  . . ,q. 

Using equations (19) and (21) we obtain 

The quantity (ui )  is the local order parameter for the Potts states, which is written 
as 

(ui )  = R~ eie- (25) 

where Bi indicates into which of the available states the order parameter at site i has 
fallen. The R j  E [0,1] indicates the corresponding amplitude. The ui lies on the 
unitary circle, and so does U!. Therefore 

(& = R~ eikd,. (26) 

Since the field H, couples to the v = 1 Pots state (Le. zero phase), we may set 
Bi = 0. The local fraction of Pot& states distributed over the sites occupied by species 
Q is then 

(27) 4-71  t ( 4  - 1)Ril i f i = l  
i f 1 = 2 , 3  ,..., q. 

fi' = -1  { 4 ( 1 - 4 )  

The energy functional in this approximation becomes 

?'? = zm -E W: pg  py(1-  q- ' ) (Ri  Rj  - 1) - H e x  pp  (1 - q - ' ) ( R i  - 1). 
i , j  

(Z) 
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The mean-field entropy is given by 

Ll 

s =  - C [ C  P ? h P ? t c P P f : h ( P ? f ; ) ]  ?=I (29) 
i @#a 

where p here represents the particle species other than Q. With f,! given by equation 
(27, we obtain for the mean-field free energy functional 

F =  Fm - (1 - q-l)XWLj pp p?(R,R, - 1) - (1 - q - ' ) H a C p p ( R i  - 1) 

t n-'TCpqI[l t ( 4 -  1)Ril h [ l +  ( 4 -  1)R;I 

i,i i 

i 

t ( 4 -  1)(1- Ri) h(1- Ri) - q hq} (30) 

where Fm is the mean-field free energy of the microemulsion model. In the limit 
q - 1 equation (30) reduces to Fm, whose minimization yields the thermodynamic and 
structural properties of the model. According to the discussion above, the clustering 
properties are obtained from the derivative of (30) With respect to q at the point 

In the following we consider a uniform (translational invariant) Potts order 
parameter R, keeping, however, the positional dependence on the particle densities. 
From equations (9) and (30) we obtain 

Nd({ Wa}, Ha) = ( 1  - R2) 

q = 1. 

PW? pq p p  t (1 - R ) P H ,  
i ,j i 

PP 

f ( 1  - R)[ln(l-  R) - 11 pp. (31) 

Upon expansion of pg in Fourier space around the value which minimizes tbe 
microemulsion free energy, equation (31) can be written as 

where pa is the concentration of Q particles which minimizes the minoemulsion free 
energy and 

Saa(k) is the structure function for species Q defined by 

Saa(k) = W ( k ) P Y - - k ) ) .  (34) 

Therefore, given a definition for connectivity between particles of a certain species 
CY (through the couplings W?) and the structure function for any microemulsion 
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model, we find the clustering properties of interest. For instance, the percolation 
locus is found by minimization of equation (32), which gives 
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where 

(Tbe temperature and composition dependence is explicitly shown for clarity). As 
the percolation criticality is approached (R + 0) at He = 0, we may expand the 
right-hand side of equation (39, and the density threshold for species 01 is then given 
by the solution of 

The generating function r is obtained from equations (15) and (31) as 

1 ad 
PO PH, 

r({w,],~,) = = I - R .  

Using equation (39,  the function r satisfies 

r = m p ( x r )  exp(-x - P H , )  (39) 

where 

(40) 
1 

Pa 
X = 2 ~ p " X w ( 0 ) + 2 p - G ~ a .  

Equation (39) can be solved in the following way. Differentiating both sides o l  (39) 
with respect to PH,, we obtain the relation r' = ( X P -  1)r. Substituting for r in 
the form of equation (15) and matching the coefficients, we obtain the solution 

Therefore, we find that the cluster size distribution is given by 

Pf = (tx)*-' e-tX 
t !  
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3. Percolation tines for water-in-oil micrwmulsions 

In this section we apply our formalism to determine the water percolation thresholds 
of a water-inail microemulsion system. The microemulsion model we use here is 
the spin-1 Hamiltonian introduced by Schick and Shih [22] in which a three-body 
interaction term favors configurations where the surfactant particles sit between water 
and oil molecules. The phase diagram and the structural properties of this model 
have been investigated within a mean-field approximation [ U ] .  In our calculations we 
used the set of parameters, T/ J = 5.0, K/ J = 0.5, L/ J = -3.0, and C/ J = 0.3, 
which was chosen such that the resulting phase diagram presents a continuous pathway 
between the water-rich and oil-rich corners of the composition triangle in the presence 
of a lamellar phase. The ternary phase diagram, at a constant temperature, is then 
similar to the one studied by Gunn and Dawson [31] who performed Monte Carlo 
simulations to investigate clustering properties of a lattice model for microemulsion?.. 

We are interested in determining the percolation threshold for water molecules as 
a function of the surfactant concentration at a tixed temperature. For simplicity 
we consider connectivity only between nearest-neighbour water molecules with a 
connectedness probability p. Thus, using equations (7) and (33), equation (37) 
becomes 

(43) 

with sP = -[ 12 In (1 - p ) ] - l .  The structure functions Sw(k)  for this model, at 
the mean-field level, are given in [23]. The numerical results fiom equation (43) for 
p = 1.0 and p = 0.8 are shown in table 1 for surfactant concentrations between 
0.12 and 0.22. The case where p = 1.0 corsesponds to a connectivity with certainty 
191, ie. two nearest-neighbour water particles belong to the same cluster. In this 
case the percolation threshold depends solely on the structure of the system in this 
approximation. From table 1 one obsewes that the threshold line (p = 1.0) occurs at 
small concentrations of water @'" k 0.1) for this range of surfactant concentration. 
Along the threshold line with p = 1.0 the concentration of water increases slightly 
with p', reaching a maximum at about ps = 0.17, and then decreases as the surfactant 
concentration is increased still further. This is consistent with the fact that addition 
of surfactant tends to structure the system. Above a certain surfactant concentration, 
which depends on the ratio pw/po, the disordered fluid structures itself with the 
surfactant sitting mostly on the water-oil interfaces, making it possible for the water 
particles to percolate at lower (water) concentrations as the amount of surfactant 
increases in the system. In fact, the water-water structure function S,, develops 
its chatacteristic peak at non-zero values of k at ps  % 0.18 for p'" in the vicinity of 
0.13. For p < 1 one has a connectivity in probability [9], ie. two neighbouring water 
particles do not necessarily belong to the same cluster. In this case it is necessary 
higher concentrations of water to reach a percolation threshold. This is well borne 
out by the results shown in table 1. Wr p = 0.8 one also notices that the threshold 
values of pw decreases with increasing surfactant concentration as we have discussed. 

4. Summary 

In this work we have described how a well known technique to determine cluster 
statistics in lattice spin systems can be used to obtain clustering properties of 
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lhbk 1. Lod of percolarion transitions for waler species. 

p' 0.12 0.14 0.16 0.18 0.20 0.U 

p=1 .0  pw O.M8 0.098 0.102 0.100 0.096 0.090 
p = O . 8  ow 0.178 0.170 0.162 0.154 0.146 0.139 

Hamiltonian models for microemulsions. The formalism presented here is a 
microscopic one, which enables the study of the effects of the molecular interactions, 
composition and structure upon the percolative properties of any three-state, lattice 
model of microemulsions Much in the same spirit of the work by Coniglio et a1 
[IO], connectivity between particles here does not necessarily imply that the particles 
occupy nearest-neighbour positions and viceversa; there. is freedom of choice for the 
activation of bonds, which may be chosen according to a particular clustering process 
one wishes to model. The theory has been applied to a simple model of surfactant 
mixtures whose phase diagram and structural properties have been published in the 
literature. The behaviour of the percolation threshold for water cluster as function of 
ps is consistent with the fact that the surfactant structures the fluid. In a separate work 
1321 we have applied a similar, but less general approach to investigate the behaviour 
of the water percolation threshold in a model microemulsion as the surfactant is 
made more hydrophobic. A systematic study of several microemulsion models that 
includes further quantitative implementation of the formalism given here is currently 
underway. 
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